The Deep Origin and Recent Loss of Venom Toxin Genes in Rattlesnakes

نویسندگان

  • Noah L. Dowell
  • Matt W. Giorgianni
  • Victoria A. Kassner
  • Jane E. Selegue
  • Elda E. Sanchez
  • Sean B. Carroll
چکیده

The genetic origin of novel traits is a central but challenging puzzle in evolutionary biology. Among snakes, phospholipase A2 (PLA2)-related toxins have evolved in different lineages to function as potent neurotoxins, myotoxins, or hemotoxins. Here, we traced the genomic origin and evolution of PLA2 toxins by examining PLA2 gene number, organization, and expression in both neurotoxic and non-neurotoxic rattlesnakes. We found that even though most North American rattlesnakes do not produce neurotoxins, the genes of a specialized heterodimeric neurotoxin predate the origin of rattlesnakes and were present in their last common ancestor (∼22 mya). The neurotoxin genes were then deleted independently in the lineages leading to the Western Diamondback (Crotalus atrox) and Eastern Diamondback (C. adamanteus) rattlesnakes (∼6 mya), while a PLA2 myotoxin gene retained in C. atrox was deleted from the neurotoxic Mojave rattlesnake (C. scutulatus; ∼4 mya). The rapid evolution of PLA2 gene number appears to be due to transposon invasion that provided a template for non-allelic homologous recombination.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Is Hybridization a Source of Adaptive Venom Variation in Rattlesnakes? A Test, Using a Crotalus scutulatus × viridis Hybrid Zone in Southwestern New Mexico

Venomous snakes often display extensive variation in venom composition both between and within species. However, the mechanisms underlying the distribution of different toxins and venom types among populations and taxa remain insufficiently known. Rattlesnakes (Crotalus, Sistrurus) display extreme inter- and intraspecific variation in venom composition, centered particularly on the presence or ...

متن کامل

Venom Evolution: Gene Loss Shapes Phenotypic Adaptation

Snake venoms are variable protein mixtures with a multitude of bioactivities. New work shows, surprisingly, that it is the loss of toxin-encoding genes that strongly influences venom function in rattlesnakes, highlighting how gene loss can underpin adaptive phenotypic change.

متن کامل

Disintegrin, hemorrhagic, and proteolytic activities of Mohave rattlesnake, Crotalus scutulatus scutulatus venoms lacking Mojave toxin.

Venom from the Mohave rattlesnake, Crotalus scutulatus scutulatus, has been reported to be either: (1) neurotoxic; (2) hemorrhagic, or both (3) neurotoxic and hemorrhagic. In this study, 14 Mohave rattlesnakes from Arizona and Texas (USA) were analyzed for the presence of disintegrins and Mojave toxin. All venom samples were analyzed for the presence of hemorrhagic, proteolytic and disintegrin ...

متن کامل

Phenotypic Variation in Mojave Rattlesnake (Crotalus scutulatus) Venom Is Driven by Four Toxin Families.

Phenotypic diversity generated through altered gene expression is a primary mechanism facilitating evolutionary response in natural systems. By linking the phenotype to genotype through transcriptomics, it is possible to determine what changes are occurring at the molecular level. High phenotypic diversity has been documented in rattlesnake venom, which is under strong selection due to its role...

متن کامل

Genetic Basis for Variation of Metalloproteinase-Associated Biochemical Activity in Venom of the Mojave Rattlesnake (Crotalus scutulatus scutulatus)

The metalloproteinase composition and biochemical profiles of rattlesnake venom can be highly variable among rattlesnakes of the same species. We have previously shown that the neurotoxic properties of the Mojave rattlesnake (Crotalus scutulatus scutulatus) are associated with the presence of the Mojave toxin A subunit suggesting the existence of a genetic basis for rattlesnake venom compositio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2016